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Abstract. Considerations based on the symmetry inherent in Maxwell’s electrodynamics 
enable us to tackle problems involving doubly anisotropic media with non-parallel principal 
axes of c and p. It is shown that one can pass on  from the results of single anisotropy to the 
more general double anisotropy with the aid of a set of substitutions. These are then applied 
to obtain expressions for the radiation cones and energy loss of a charge moving uniformly 
in a generalized uniaxial medium. 

1. Introduction 

Studies on the optics of anisotropic media generally ignore the tensor character of 
magnetic permeability and assume that p = 1. This is justified in the range of optical 
frequencies, where the time periods of electromagnetic oscillations are much shorter 
than relaxation times of magnetic phenomena (Landau and Lifshitz 1960, Born and 
Wolf 1965). At microwave frequencies on the other hand, doubly anisotropic materials 
find frequent application. For instance, certain magnetic complexes imbedded in 
crystals of high dielectric constant as host lattices (eg chromium-doped titania) appear to 
have distinct advantages as maser materials (Gerritsen et a1 1960). In such situations, the 
tensors c and p often have their principal frames inclined to one another (Lewandowski 
1971). A comprehensive treatment of the electrodynamics of such a general medium 
must of necessity be considerably involved. Yet, the remarkable symmetry with which 
electrical and magnetic quantities enter Maxwell’s equations can be expected to mitigate 
the complexity of even this general case. This symmetry has been clearly brought out 
and exploited by Majumdar (1973) to reduce the problem of Cerenkav radiation in a 
doubly anisotropic medium to that in a singly anisotropic medium with p = 1. 

Cerenkov radiation extends continuously into the low frequencies and is of interest 
in the production of microwaves (Jelley 1958). In this context, the use of ferrites (which 
generally have a tensor permeability) has been advocated in order to augment the 
generated power by a large factor (Lashinsky 1956). Cerenkov radiation in doubly aniso- 
tropic media has therefore been the object of considerable study (Muzikar and Pafamov 
1961, Majumdar and Pal 1970,1973). These studies, however, confine themselves to the 
special case of coincident principal frames of 6 and p. 

In the present paper, we consider a general doubly anisotropic medium with non- 
parallel principal frames and show that the field and energy loss of a charge moving 
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uniformly in it can be obtained by effecting a set of simple substitutions in the results for 
the case of single anisotropy. The mathematical situation is highly symmetric in c and p, 
and one could start either with pure magnetic anisotropy or pure electric anisotropy. 
The technique of this substitution is illustrated by calculating the energy loss of a uni- 
formly moving charge in a generalized uniaxial medium (Majumdar 1973). The solution 
of this apparently intractable problem turns out in the end to be surprisingly simple. 
The Cerenkov cone in this instance is made up of two distinct second degree surfaces 
whose equations are derived using the same set of transformations. 

Again the Cerenkov cone is connected to the Fresnel wave surface in the medium 
by a very simple transformation (Majumdar and Pal 1973). The wave surface being a 
picturesque description of the characteristics of wave propagation in a variety of situa- 
tions (O'Dell 1970), one is led to expect that a similar reduction of double anisotropy to 
single anisotropy should be a feature common to several other aspects of the optics of 
general doubly anisotropic media. 

1.1. Explanation of the symbols used 

All quantities referred to the p and E frames are indicated with the superposed signs 
(-) and (*) respectively. 

X", X are the coordinates of a field point in the rest frame of the medium and of the 
charge respectively. 

P is the orthogonal matrix transforming 
R, R are the transformations from the 
E,  p are the permittivity and the permeability tensors in the X" frame. 
5 = (p)-' and q = (c ) - l .  
b is the diagonal matrix with Bij  = 0 for i # j and nii = dLi. 
D is the diagonal matrix with dij = 0 for i # j and dii = dei. 

to 2. 
frame to the p and E frames respectively. 

2. Symmetric reduction to single anisotropy 

We choose a coordinate frame with the xy axis along the direction of uniform motion of 
the charge. In an inertial frame at rest with the charge, the Fourier integral for the scalar 
potential is given by (Majumdar 1973) 

In these expressions, valid in a general biaxial medium with non-parallel principal axes 
of E and p, 31 is the reciprocal permeability and K ,  , o and c i j  stand for y K ,  , yKK,t.  and 
( 0 2 / c 2 ) c i j  respectively. Square brackets signify the cofactors of the matrix elements they 
enclose. In order to simplify the expressions for A(K)  and [ai,(K)], we now subject the 
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vectors Kand Xsimultaneously to a series of transformations such that the scalar product 
K .  X remains invariant. 

(i) Let the coordinates of a point in the X' frame be connected to those in the principal 
permeability - -  (p) frame by X" = RS. We now make the substitutions 111''2~= DF 
and DzD = z' where Di j  = 0 for i # j and Dii = ,./Ai. Let S be the orthogonal matrix 
- that makes z' diagonal by E" = S-'z'S (Majumdar 1973). With the transformation 
K' = Sp, we have, 

and 

[a i jF)]"  = RIr2 + C; + 6; - KYK; - aij C + [cyj ] .  ( 5 )  i 1- - 
I t  is then evident that these expressions for A " ( p )  and [aij(p)]" are formally identical 
to the corresponding ones in a medium with magnetic isotropy (A = 1) but with e i  
replaced by c;. 

(ii) We can also pass on from the Y' frame to the E frame by a transformation 
Y' = R%. While R is the transformation from the X' frame to the p frame, R is the 
corresponding transformation from the X' frame to the E frame. (Henceforward, all 
quantities referred to the p and E frames will be indicated by the superposed signs (-) and 
( - )  respectively.) With the substitutions 2' = D I  D, where bij = 0 for i # j ,  bii = dei, 
and D B  = I E I " ~ ~ ' ,  we obtain a symmetric matrix 2' which can be diagonalized by an 
orthogonal matrix 8, by A'' = S-'f 'S. Since k' = Sw", we have 

A.. A 

where we have employed the symbol p; for 1,'A;. Again, 

1 p 2  

[ U i j ( P ) ] "  = 1I"l 1 ++A; + A ; - E A ;  a$; - ( A ; A ; ) l ' 2 d i j R " 2 + h i j .  (7 )  

I t  is easily seen that these expressions have attained their normal forms of electric isotropy 
( E  = 1) but with Ai replaced by 2;. 

CY, Ay, S and S are characteristic of the medium, depending only on the principal 
values ci and J2 of the two tensors and the orthogonal matrix P that connects their princi- 
pal frames. I' and z' are seen to be connected by the similarity transformation 
I' = Qz'Q- ' with Q = DP- '  6. Hence it follows that they have the same eigenvalues 
A; = EI) = l/py. Thus, these three constants C Y  decide the nature of electromagnetic 
wave propagation in the general biaxial medium. 

Since the expressions for A(K) and [aij(K)] in the general case are reduced formally to 
magnetic isotropy on applying the set of transformations (i) and to electric isotropy on 
applying the set (ii), the two sets of transformations can be considered dual to one another ; 
and any theorem arising out of one set, will have its dual arising out of the other. 

i 4 

The energy radiated per unit path length is given by the integral 
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Applying the sets (i) and (ii) of transformations respectively, the radiated energy reduces 
to 

where q is the reciprocal permittivity. 
The shape of the contour for the K 3  integration is ascertained by determining the 

sign of the imaginary part tJ of K , .  Let e, and mi be the infinitesimal imaginary parts in 
E, and pi respectively. The equation giving the poles of the integrand in the K 3  plane is 
therefore obtained as 

Now, 

where 2 is the diagonal permittivity tensor. Since 6 and P are orthogonal matrices and 
6 is a diagonal matrix, ( S - ' b P ) T  = P - '  6 s .  Calling S - '  D P  = T, we thus have 
c'! J = TjZiiri, and 

To evaluate the second term in (10) we pass on to the p frame and note that 

!(E", K") -+ f(p", P )  
when E" -+ p" and + P. Equation (10) thus simplifies to 

[.,( Tj2i[ajJ{F)]" ) + 7 m i  Itl' ( j fjZi{Ujj(P)}/! ) ] + t z x  aRy - 0  (11 )  
f f 3 j $ j i  ?f(p", P )  

where f = S- '  D- P -  ' and {aj@")}" are obtained from [aj,@")]" by the substitutions 
cy -+ py and Ry -+ 

The parametrization off(€', K )  and [ajj( K')]'  in the simpler case of coincident princi- 
pal frames of c and p is given by Majumdar (1973). Since f(d, K ' )  -+ f(c", R') and 
[aj j (K')] '  -+ [ajJ@')]" as C; -+ E; and Ki -+ Ky, we note that an identical set of parameters 
can be introduced by replacing E: by t:I and K: by R:' in his expressions. The same 
substitutions once again serve to achieve the parametrization off(p", k) and {a@"}" 
if we replace E: by and R:i by RI'. However, the assumption that E; > t g  > cl; implies 
py < p; < p:, and thus there is an interchange of expressions on the inner and outer 
sheets when we go from the E frame to the p frame. It then follows that similar arguments 

in the latter. 
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apply even in this general case and the shape of the contour for K 3  integration remains 
unaltered. 

R i a ,  R;a where R" = R'S 
and 

We now construct an orthonormal triplet of vectors 

Noting that K is held fixed while the integration over K 2  is carried out, the integral (9a) 
reduces to 

If one now makes the substitutions 1 = 1, R" + 8, R; + k,, and cy + c i ,  the resulting 
integrand is exactly that obtained in the simpler case of magnetic isotropy. It follows 
that if in the expression for the radiated energy in a medium with 1 = 1, we make the 
substitutions R + R", ci  -P E:. ) ,  K ,  + (\11/All)1~2Kl and multiply the result by (Al l / \A l )1 '2 ,  
we obtain the radiated energy for a charge moving in an arbitrary direction in a general 
doubly anisotropic medium. Since the integral for the field differs from that of the energy 
loss in the presence of an exponential factor in the numerator, an additional substitution 
is required in the case of the field, namely, 2, -+ Xi' where 

The dual of this theorem is obtained if one proceeds from (9b) and applies the set (ii) 
of transformations. By symmetry, we can infer that the scheme of substitutions that 
takes us from electric isotropy to double anisotropy is 

and an overall multiplication factor of (ql l/lq\)1'2. R' is obtained from R' of (12), and 
9; from S:.) of (14) by the substitutions 

3. Energy loss in a generalized uniaxial medium 

Let us apply the above theorem to calculate the energy loss ofa charge moving uniformly 
in an arbitrary direction in a generalized uniaxial medium with c'; = c:(p'; = ps). We 
start with the well known expression for the radiated energy in a uniaxial ferrite with 
electric isotropy ( Q  = 1, p2 = p3) ,  
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Under scheme (ii) of substitutions, 

Now, 1" = S- '  D P - ' x P  DS and hence 

n; = (EpEv) l~23pi3"iPppPH, ,~p .  

Substituting equation (17) in (16), we have, 

Thus, 

In terms of the ordinary E (and not their multiples (02/c2)c), we have 

It is interesting to note that the energy loss can be expressed in this form where it 
depends only on the tensor components of E and p and does not involve the auxiliary 
matrices S and S, and the constants E:. The same result is also obtained if we start with 
the expression for the radiated energy in a uniaxial dielectric with magnetic isotropy 
(e2 = E ~ ,  h = 1) and apply the scheme (i) of substitutions. 

In terms of Ki ,  the equation f ( c " ,  P )  = f(p", k") = 0 represents the Fresnel wave 
surface. When E'; = E:, f ( c " ,  F) ,  for instance, factorizes as follows : 

f (E",  F )  = (R"2 -E';) (21) 

Transforming to the unaccented variables, and noting that 

,,-, = s ,  - - - - - - E , K " ~  ,,eijSja SJC; S,,,,KL = <jR:RJ = Illc,pK,Kp 
il 

we obtain 

The equation of the Cerenkov cone is obtained from this by the transformations 
K ,  -, y K , ,  cij -, B2y2K:qj, Ki -, xo and omitting y .  This leads to two distinct cones 
whose equations are 
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The characteristic cones which are reciprocal to the radiation cones have the equations 

and 

Exactly the same equations can be obtained from the equation f(p”, h?‘) = 0 and apply- 
ing the other set of transformations. 

The results of this section reduce to the corresponding ones in various less general 
situations. When the medium is uniaxial by virtue of parallel principal frames and 
p z  = p 3 ,  c Z  = c 3  we obtain the expressions of Muzikar and Pafamov (1961). For parallel 
principal frames, but with the less restrictive condition € 2 ~ 3  = € 3 ~ 2 ,  the results of 
Majumdar and Pal (1970) follow. 
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